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Abstract. We describe our new mobile media content browser called a
MiniDiver. MiniDiving considers media browsing as a personal experi-
ence that is viewed, personalized, saved, shared and annotated. When
placed on a mobile platform, such as the iPhoneTM, consideration of
the particular interface elements lead to new ways to experience me-
dia content. The MiniDiver interface elements currently supports multi-
camera selection, video hyperlinks, history mechanisms and semantic
and episodic video search. We compare performance of the MiniDiver on
different media streams to illustrate its feasibility.

1 Introduction

Currently, on a mobile platform, video is normally watched with a video browser
that still uses a tape playing metaphor. That is, it has transport controls for play,
rewind, forward, skip forward and backward. However, when video contains meta-
data, such as hyperlinks, semantic content (i.e., keywords and multiple camera
angles, the interface does not allow a simple way to navigate through this com-
plex video space. Thus, for example, when browsing YouTubeTM it is easy to get
lost in a multitude of video sources. As well, there is no obvious way to record
history or share partial content or provide annotation. Likewise, mechanisms
to hyperlink content or do episodic or semantic based searches are limited. We
have been exploring new interaction paradigms for video browsing, navigation
and annotation as part of our MyView research to provide personalized video
experiences using a novel video browsing MyView client called a Diver.

The concept behind the MyView research program is that in the future,
tracking technology and pervasive video/audio capture technology will be used
to automatically tag video content making for rich, complex video data space
that can be viewed differently by each person. In this paradigm, the notion of
the video clip becomes less clear since it can be at the granularity of a single
person in a single instant. For example, at an indoor Olympic event, such as ice
hockey, we can create personal views of the game while it is being played as well
as after the game that can be delivered over wireless protocols to cell phones or
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Fig. 1. Interface of Video Player with Heads Up Display (HUD) and Toolbar.

other devices. Audio and video data may be captured by multiple sensors and
streamed to a multimedia server continuously. Hockey players may be tracked
using video and/or other mechanisms to detect when they are in view of each
video camera providing tracking and view orientation meta-data. Likewise, ad-
ditional semantic data, such as keywords, may be provided by broadcasters and
other viewers. With this meta-data combined with the multiple video sources, a
valuable, personalized, fun memory of an event can be viewed and shared. The
Diver provides mechanisms to view this rich video space, though, is currently
intended to be embedded in web-browsers and WIMP interfaces.

As part of MyView, we also address the emerging trend that video enter-
tainment on a mobile platform is quickly becoming typical. Thus we also have
constructed a version of the Diver for a mobile environment; specifically, an
iPhoneTM. We call this a MiniDiver and it takes advantage of the specifics
of limited screen real-estate and particular input mechanisms found on mobile
phones. Figure 1 shows an example of the iPhoneTM interface for the MiniDiver.
In this paper, we focus on four main issues that arise when rich video content is
viewed on the cell phone. Specifically, we have investigated interface mechanisms
in the MiniDiver to allows users to: 1) select multiple camera views, 2) navigate
hyperlinked video content, 3) save and retrieve complex MiniDiving history, and
4) use both episodic and semantic mechanisms to access video meta-data.

Each of these four items are emerging as key components of the video experi-
ence. For example, at a sporting event, such as ice hockey, there may be multiple
cameras focused on the action synchronized in time. Likewise, each player’s loca-
tion may be tracked and appropriate hyperlinks to new video or other web con-
tent be integrated with the video experience. As users Dive through the hockey
game, their history becomes complex as they follow hyperlinks and change cam-
era angles. In this situation, going “back” isn’t obvious for what should happen.
Finally, the meta-data associated with the data allows for automatic assembly
of personalized video based on combinations of episodic (i.e, image/video based)
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or semantic (i.e. keywords) mechanisms. These are integrated into the MiniDiver
as we discuss below.

In Section 2 we cover some of the related work that has investigated rich
video content mechanism and means to access it by users. Section 3 provides a
description of the main types of interface paradigms we have created for the video
experience. All our examples use ice hockey as our event that we are MiniDiving.
We have used multiple cameras to capture footage of an ice hockey match and
have created meta-data tags associated with the players from all camera angles
for our test data. We cover some of the performance issues in Section 4 and
conclude with a discussion of the emerging complexity of navigating rich video
data spaces and the interaction design approaches needed to deal with them.

2 Related Work

For many years traditional TV stations utilize multi-camera views to enhance
the user’s experience especially when broadcasting sport events. Relaying on a
broadcast channel viewers are dependent on directors who select camera angles to
provide a “best view” for an entire audience. Taking the “best view” experience
to the next level implies viewers can choose for themselves the “best view”
based on their personal preference. This requires new interface concepts for video
players that enable viewers to switch between available camera views. Lou et al.
[1] developed a video player for their multi-view video system which includes a
slider within the interface to allow viewers to switch seamlessly among views of
the current video presentation. Navigational aids within the video space are not
supported, which makes it especially difficult for longer video sequences including
multiple views.

In computer vision research multi-camera views are widely used, e.g. for
object tracking [2] or view synthesis[3]. Sport video analysis especially takes ad-
vantage of object tracking algorithms that employ multiple camera sources in
order to extract context sensitive metadata e.g. player location [4]. Such location
data can be used to create object-based video annotations [5], also called hy-
pervideo links[6]. Similar to a hyperlink in a web page viewers can interact with
a hypervideo link to access additional information. Hypervideo links follow the
associated video objects and hence contain spatial and temporal information.
Usually, hypervideo links have a visual representation on top of the video object
to announce their existence to the viewer [7]. Until now research has primarily
focussed purely on single video sources that include hypervideo links.

According to Cockburn et al.[8] revisiting information from the past is a
common activity of users. In the web domain, standard browsers allow users
to set bookmarks, use back and forward buttons or history lists in order to
access previously visited web pages. Tools such as WebView[9] or Global Tree
Browser [10] are examples that provide special functionality for revisiting Web
pages. For local file access GoogleDesktop [11] and TimeScape [12] keep a history
record allowing users to easily revisit their content. Based on the richness of
context-sensitive video including multi-camera views the demand for a history
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tool enabling easy and fast access to previously selected video sequences has to
be considered. Though, with time-based media, it requires more sophistication
than for static webpages.

3 MiniDiver: Exploring Video Content on the Mobile
Platform

The MiniDiver is designed to provide a user interface that is intuitive and re-
sponsive, yet powerful enough to take advantage of a context-aware video space
on a mobile platform. The interface is based upon the concepts developed for
the desktop MyView client, but with a focus on the iPhoneTM which is a touch-
enabled mobile device. There is also a personalized viewing mode where the
user can browse video according to their unique preferences and interests. The
MiniDiver requires options to display relevant metadata such as player positions,
and names by overlaying them on top of the video content as in our ice hockey
example. The MiniDiver supports the ability of users to control video with the
usual transport control mechanisms (play, stop, backward and forward) but also
provide mechanisms to change viewpoint, save and retrieve MiniDiving history
and search/navigate using both episodic and semantic queries.

In this paper, we have prototyped our MiniDiver so that it uses local con-
tent residing on the iPhoneTM or data over a network from a MyView server.
The MyView server has a Director component that contains rules to feed video
content to the MiniDiver appropriately, however, this is outside the scope of this
paper. For communication with a simple networked client, the MiniDiver uses
the Hive [13] communications protocol in order to stream content to the client
device. Section 3.1 discusses the design of the MiniDiver that address the main
four interaction mechanisms listed in Section 1.

3.1 MiniDiver: MyView Client Design

Our design concept of the mobile client is based on four user interfaces serving
mobile context sensitive video. These interfaces are Content Browser, Video
Player, Multi-Camera Browser and History Browser. In the following we will
discuss and present each interface in more detail.

Content Browsing Once the application loads the user will want to select
some content to watch in the video player. We present the content selection
interface using the usual iPhoneTM table view hierarchy. In this commonly used
interface style the user drills down into a series of lists that end in a detail view.
In our navigation hierarchy the home screen allows the user to select a content
source, and the next level allows them to select which events they would like to
watch. A single event can be selected by tapping on it, and multiple events can
be selected by tapping the navigation bars select button. This pops up an action
toolbar at the bottom of the screen and transitions the list view into a selection
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Fig. 2. Modal bookmarks view activation animation.

mode. Events can then be selected by tapping on them and the action toolbar
can be used to filter the result, or jump right into video playback. If the user
has previously saved a bookmark they can access it from the startup screen by
selecting the bookmarks button in the navigation bar. The bookmarks browser
is presented as a modal view which slides up over the home screen. This was
chosen to mimic the bookmarks functionality in MobileSafari (the iPhoneTM’s
web browser). Tapping on a bookmark will take the user directly into the video
player.

Once we enter the video player the system status bar is hidden to provide
the user with a fully immersive experience. The interface is also re-oriented to
landscape mode with the home button to the right of the screen. At this point
we support only the landscape orientation for the Video Player and its siblings,
the history browser and multi-camera browser.

Video Player The video player screen, shown in Figure 1, contains much of
the functionality of MiniDiver. From here users can navigate through time by
grabbing the playhead or by using a two finger scrub gesture.

MyView content directly supports multiple video streams, so the user can
also choose which camera angle they wish to view the action from. This is ac-
complished by a swipe gesture on the VideoPlayer screen. For example swiping
left pushes the current video stream offscreen and brings in the stream of the
camera physically located to right as shown in Figure 3. This gesture only allows
for movement between streams in a one dimensional space, however we found
that this was enough to spatially locate the streams in our test content. The
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Fig. 3. Video stream switch animation.

one dimensional interface that we have developed is modelled after the photos
application where users can swipe left and right to browse their photos. We have
had to adjust this behavior slightly so that users can not slide a video stream
partially offscreen because we are limited by the mobile device processing power
and the wireless network bandwidth to display two live video streams at once.

Notice that this approach only provides for relative camera view selection.
That is, using the swipe interface you can move to cameras that are left or right
(up or down if vertical swiping is added). Further, left and right camera views
can be selected by the MyView Director service on the MyView server to provide
meaningful interpretation as to viewing content more to the right or left. This can
be done based on a quality-of-view analysis [14] or virtual viewpoints [15, 16]. To
have an absolute camera position selection requires meta-data tags that include
a layout of the cameras in an absolute coordinate frame. We have not included
this at this point since it is a variation on the Multi Camera Browser covered in
Section 3.1, except we require mechanisms to show the video feeds from each of
the absolute camera position. As well, like the relative camera position selection,
the MyView Director will select a reasonably small set of either real or virtual
cameras based on lowering cognitive load of the user, quality-of-view constraints
and user preferences.

MyView content can be tagged with various information about objects that
are onscreen and events that occurring at a given time. In our hockey example,
content is tagged with player names and locations using hypervideo links and it
also includes background masks. We use this information to allow users to select
players in the video player view. This can be accomplished via a tap (single
click), which triggers a player/object selection mechanism. Tapping the screen
enters the selection mode which pauses the video and highlights all objects which
are selectable. The user may then select an object by clicking on them; multiple
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objects may be selected in this manner. Video is started again by clicking on a
non-selectable region of the screen.

The video player does have a simple translucent heads up display (HUD) and
toolbar that can be activated by a single tap as shown in Figure 1. The HUD
contains a play/pause button and a button to enter the multi-camera browser.
The toolbar contains a playhead and scrub bar, as well as a button to enter the
history browser.

Multi-Camera Browser Non-linear context sensitive video presentations based
on a multi-camera scenarios require a visual disclosure of all available useful
video streams to assist users to find their “best view”. Hence, to allow users to
easily navigate through available video streams we have created a multi-camera
browser interface as shown in Figure 4.

We wanted the multi-camera browser to be a natural extension of the video
player and we also anticipate that it will be used frequently. To best serve these
requirements we made the multi-camera browser activate immediately when re-
quested and only have a short activation animation. To achieve this we start
loading visible video streams asynchronously right after kicking off the acti-
vation animation. Besides keeping initial load times down this also allows the
browser to be fully responsive to touch input as soon as it is activated regardless
of whether images are still being loaded from the network or disk.

Users access the multi-camera browser through a double tap on the HUD
of the video player. When activated the application scales down the currently
playing video to a grid view which also shows all of the other camera angles
that are available. Video frames load asynchronously and fade in when ready,
allowing the view to be interactive as soon as it is activated. The grid of camera
angles can easily be scrolled with a vertical swipe gesture, and tapping on video
frame will switch to that camera and transition back into the video player. If
the user does not wish to select a camera there is a cancel button on the toolbar
which will take them back to the video player.

History Browser Context sensitive video content that includes multi-camera
video stream requires new forms of navigation aid for its users. The History
View allows users to navigate back to video sequences they had already selected
in the past. To achieve this functionality, our mobile client keeps a record of
every video scene users access combined with its start and end time of the video
playback. With this data we are able to create an interactive History View Grid
that can be used for navigation purposes. The History View Grid is shown in
Figure 5.

The History View has two view modes: time-based and node-based. In both
modes, the History Tree Structure is displayed with each clip being a rounded
rectangle. Each rectangle is colored to indicate which camera the clip has video
from, and the first frame of the clips video is also displayed to assist with dif-
ferentiating cameras. The default state of the History View interface is the time
mode.



8

Fig. 4. Interface of Multi-Camera Browser.

In the time mode, the width of the rectangles are determined by the length
of each clip while in the node mode the clips all have equal width. In both the
heights are all the same, just big enough for a finger to tap. To switch to a
previous clip or sequence, the user taps on the location in the history tree where
they want to go to. The tree will animate to its new structure and keep the
current sequence up to date in the player. So when a user taps the middle of
a clip, that clip is made active and its sequence is loaded into the player. The
playhead is also moved to the point in time corresponding to the location of the
tap in the clip.

There are two axes in the default time view, a sequence axis and a time
axis. The y-axis is the sequence axis and indicates which sequence falls at that
level of the history tree. The time axis displays seconds and is inline with the
start times and lengths of the displayed clips. The time axis can be switched to
a “depth” axis by tapping the toggle button (tapping the toggle button again
switches back to the time mode). In the node mode, all clips are displayed as
having equal lengths, and the x-axis indicates their depth in the tree. This mode
is useful if there are a large number of cuts over a short period of time, making
them difficult to see on a scale proportional to time. As a history tree becomes
larger, some portions will move off screen but can be reached just by dragging
the tree until the desired sections are visible. The axes follow this motion and
adjust their values accordingly, so the user always knows where they are. The
active clip is indicated by a blue border, and the playhead position by a blue
vertical line on the active clip.

3.2 MiniDiver and MyView Communication Architecture

The MiniDiver uses the same underlying communication architecture as the
MyView system, a flexible and modular framework called Hive[13, 17]. All the
components of MyView are based on Hive to facilitate simple communication
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Fig. 5. Interface of the History Browser.

and re-use of components on various platforms. Hive provides a communication
protocol and an abstracted transport service for the transfer of data to different
devices. The transport service can be implemented using various technologies
(such as shared memory, ethernet or Bluetooth) to increase the number of devices
that can communicate in the MyView framework. The connection paradigm is
peer-to-peer to increase bandwidth but still allow centralized control.

The complicated processing of data (compression, background subtraction,
player tracking) is performed centrally on a group of machines and the results
are sent to the MiniDiver, using Hive as the transport medium. Each component
is defined as a Hive drone, which is a module capable of performing a task and is
controlled by an application. Applications have ultimate control over the drones
in the system, and can construct pipeines by connecting drones together; the
MiniDiver acts as a Hive application, controlling the drones and their connec-
tions. In future the MiniDiver will connect to a single point to receive data, to
accommodate multiple MiniDiver clients.

3.3 Video Streaming

Getting video onto the MiniDiver is accomplished by streaming footage to the
device using Hive for transportation. Multiple camera footage is stored centrally
on a video server accessible via a drone operating as the interface between the
video database and other Hive modules. Data transfers can operate in various
modes, one of which is called the request mode. In this mode, data is only sent
when requested by the destination drone; using this mode the images streamed to
the device can change the camera footage currently being streamed by changing
the request. This results in a lower latency than using a continuous streaming
mode, and is scaleable to a larger number of camera sources.

Due to memory constraints on the mobile device, previous frames are not
cached, so scrubbing along the time bar or navigating the history results in new
requests for the previous data.
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Content Resolution Format Frame Rate Data Rate

High Quality 480× 270 JPEG Sequence 30Hz 630 KB/s

Low Quality 240× 135 JPEG Sequence 30Hz 248 KB/s

Low Quality 240× 135 JPEG Sequence 15Hz 124 KB/s

High Quality 480× 270 H.264 30Hz 55 KB/s

Low Quality 480× 270 H.264 15Hz 25 KB/s

Fig. 6. Comparison of data formats and rates - the iPhoneTM supports H.264 which
is much more efficient, but not directly accessible to the developer. Our application
employs JPEG sequences for compressed video streaming.

Content Location Frame Rate

iPhoneTM 3G iPod Touch 2G

High Quality Local 5 FPS 12 FPS

Low Quality Local 17 FPS 30 FPS

High Quality Network × 8 FPS

Low Quality Network × 23 FPS

Fig. 7. Video playback performance using the JPEG sequence format (network testing
performed only on the iPod Touch 2G).

4 Results

This section presents the formats used for video streaming and the results of tests
on latency and achievable frame rates on the mobile platforms of the iPhone and
the iPod Touch.

The table in Figure 6 presents the quality of video used in the tests and the
bandwidth required for each format. Due to the lack of support for developers
to use the native video formats (H.264) the MiniDiver uses compressed JPEG
image sequences for video. This also allows for frame-level requests from the video
servers, which would be more complicated with H.264 because keyframes are
widely spaced. H.264 formats are presented in the table to provide a comparison
of data rates used.

Based on the tests we performed on the iPhoneTM 3G and the iPod Touch 2G
there are obvious performance differences, shown in Figure 7. The iPod Touch
2G has an upgraded ARM processor from previous revisions, which explains its
increased performance. Generally, using high resolution JPEG sequences results
in low frame rates, with the iPod having the only acceptable rate for local access
to video.
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Network-based tests were performed only on the iPod using the request mode
outlined in Section 3.2. There was a substantial drop in performance using the
network, although we believe this could be significantly improved with optimiza-
tion of the Hive implementation on the device. The MiniDiver performs well with
the lower quality content either from local content or over the network. The la-
tency in requesting a different camera angle is also reduced with lower bandwidth
footage.

5 Conclusion and Future Work
We have created a new context-sensitive video browsing environment for the
iPhoneTM called a MiniDiver. It provides mechanisms to select multiple camera
views, navigate hyperlinked video, save and retrieve complex MiniDiving history,
and some episodic and semantic search mechanisms. These mechanisms are nec-
essary to allow people to experience the enormous amount of video content that
is being generated. We have shown how multiple synchronous camera views can
be accessed using a touch interface. We have included a mechanism to allow users
to select moving objects in the video scene and get hyperlinked data associated
with them. We have included a mechanism to support users traversing their his-
tory in complex, non-linear ways that re-interprets what it means to rewind and
fast-forward in video. Our implementation of the episodic and semantic search
mechanisms remains to be refined as we only provided semantic mechanisms
and basic episodic mechanisms as found in the camera views in the MiniDiver.
Our Hive implementation has provided performance measures to illustrate that
delivering rich, interactive media data on a mobile device is feasible.

All of these mechanisms have yet to be thoroughly user tested as we have just
defined the requirements needed in a video browsing environment to deal with
the complex demands of large-scale, meta-tagged video. We continue to explore
improved searching, enhancements for selecting one-to-many hyperlinked video
data and developing means for the MyView server to supply only relevant data
to the user based on their queries, context and profile.

This paper described our current prototype of a MiniDiver on the iPhoneTM.
We are pursing design guidelines and prototypes for mobile devices for dealing
with the anticipated changes in video content that are emerging due to the pro-
liferation of video capture devices, video processing techniques and personalized
video content. We believe a shift is needed for users to be able to effectively
manage and share the wealth of video experiences the will have in the future.
The MiniDiver provides some of the functionality that addresses this shift.
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