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Abstract—In this paper we explore a conceptual mapping of
the image registration problem into an N-Dimensional problem
space based on the properties of the images being registered,
in contrast to traditional surveys of image registration which
divide the field algorithmically. The five main dimensions of
our proposed mapping are variations in: spatial alignment, in-
tensity, focus, sensor type, and structure. Individual algorithms
can be thought of as supporting a volume of solutions within
the problem domain map, although they are typically designed
to solve problems along a single dimension. Existing image
registration papers and techniques are taxonomized within this
mapping according to these major dimensions. The focus of
this paper is threefold. First, an up-to-date survey of image
registration techniques is provided, building from previous
seminal surveys. Second, a novel taxonomy is presented that
organizes the registration problem space based on the variation
between the images being registered. Finally, a number of new
research areas made possible under this novel taxonomy are
examined, and a path is laid out for future research in the
field.
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I. INTRODUCTION

Image registration is the process of calculating spatial
transforms which align a set of images to a common
observational frame of reference, often one of the images
in the set. Registration is a key step in any image analysis
or understanding task where different sources of data must
be combined. It is a critical component of computational
photography [1], remote sensing [2], [3], automated manu-
facturing processes, and medical image processing [4], [5].
More recently it has been used to create navigable models
of a scene from a database of photographs [6], to remove
unwanted objects from overlapping images, etc.

Previous surveys of image registration [7], [8] divide
the field algorithmically, focussing on how registration is
accomplished. This approach provides a good basis for
classifying and comparing algorithmic similarity, however
it does little to illuminate the conditions important to the
problem of registration. Understanding the image registra-
tion problem space and the conditions under which specific
algorithms perform best allows for further automation of
image registration, and makes the field more accessible to
non-experts.

The new taxonomy proposed within this paper maps the
registration problem space based on the type of registration
problem being solved, focussing on properties of the images
or data being registered. The most appropriate method of
registration of a set of images is most often determined by
how these properties vary in comparison to one another.
We provide a mapping of existing papers and techniques
into our N-dimensional space of problem variances. Within
our mapping individual algorithms can be thought of as
supporting a volume of solutions within the problem domain,
although they are typically designed to solve problems along
a single dimension. By rethinking the problem in this way
we change the abstraction of registration from one requiring
knowledge and expertise about particular algorithms, both
in how they work and when to use them, to one requiring
expertise about the registration problem itself, which is much
simpler for programmers who are not vision experts to
understand and implement. In Section V we further discuss
the benefits of this problem centric taxonomy.

Several important image registration techniques and
strategies have been developed since Zitová and Flusser first
published their survey. The increased computational power
of the past decade has made automatic methods common,
and under optimal conditions modern algorithms are able
to align image pairs more accurately than can be detected
by the human eye [9]. Our intention with this paper is to
organize these new methods by the conditions under which
they perform optimally, and to reorganize the classic or key
ideas introduced prior to 2003 that are still in use today. As
with Zitová and Flusser we do not examine details of par-
ticular algorithms or perform comparative experiments, but
instead attempt to map and summarize the main approaches
used in registration today. It would be difficult to provide
an evaluation of every image registration algorithm, or even
every type of registration problem.

The contributions of this paper are threefold. First, an up
to date survey of image registration techniques is provided,
building off of previous seminal surveys [8], [7], [5].
Second, a novel taxonomy is presented that organizes the
registration problem space based on the variation between
the images being registered. Finally, a number of new
research areas are made possible under this novel taxonomy,
and a path is laid out for future research in the field.s



In Section II we present an overview of registration
methodologies, reexamining the frameworks present by Zi-
tová and Flusser [7], by Pluim, Maintz and Viergever [5],
and by Brown [8] in their comprehensive surveys. Section
III explores in detail main dimensions of the registration
problem space, and outlines the dominant and alternative
methods in each category. Methods for evaluating the accu-
racy of a registration are discussed in Section IV. Finally,
Section V summarizes and explores potential future trends
and applications.

II. IMAGE REGISTRATION METHODOLOGIES

Past image registration surveys have provided a method-
ological taxonomy for understanding the different algorithms
used to solve the registration problem. Brown [8] divides
registration into four components: feature space, search
space, search strategy, and similarity metric. The later work
of Zitová and Flusser [7] divides the field into area and
feature based methods, and their model reflects the shift
towards feature based methods that occurred between the
two papers. The four basic steps of image registration under
their model are: feature detection, feature matching, mapping
function design, and image transformation and resampling.
Like Brown we have chosen to leave image transformation
and resampling out of our taxonomy; these steps, though
important for most computational photography applications,
can be considered rendering problems, and are independent
of spatial alignment. Maintz [4] provides insight into the
use of registration in medical imaging, providing important
methods and variations relevant to that field. The taxonomy
divides both algorithmically and based on the modality of the
data, again providing a similar mapping. Pluim et al. [5] also
survey medical imaging, focusing on Mutual-Information-
Based registration techniques. Their taxonomy classifies
algorithms into two main categories: methodological aspects
and aspects of application.

Within her framework Brown talks about how knowledge
of the types of variation that occur in image sets can be
used to guide selection of the most suitable components for
a specific problem. Variations are divided into three classes:
variations due to differences in acquisition that cause the
images to be misaligned, variations due to differences in
acquisition that cannot be easily modeled (such as lighting
or camera extrinsics), and finally variations due to movement
of objects within the scene. These are labeled by Brown
“corrected distortions”, “uncorrected distortions”, and “vari-
ations of interest” respectively. Zitová and Flusser provide
a model of variation according to the manner in which the
images were acquired: different viewpoints, different times
/ conditions, different sensors, and finally scene to model
registration. Within their survey they do not use this mapping
directly, however in many cases they discuss the type of
problem each method has been designed to solve, allowing
a similar mapping of methodology from situation. Similarly

Pluim et al.’s “aspects of the application” entail image
modalities, subject of the registration, and the object of
registration. This delineation provides an excellent starting
point for variations that are important within the medical
imaging community.

It is this concept of variations that we have chosen to
base our taxonomy on, extending these initial ideas into
specific variations common in computational photography
and remote sensing and exploring the successful algorithms
in each categorization. Our five main categories are: Purely
spatial variation, variations in intensity, variations in focus,
variations in sensor type, and finally variations in structure.
These categories could be differentiated further, and others
certainly exist, however the majority of registration methods
encountered target one of these types of image variation.

III. CLASSIFICATION OF REGISTRATION PROBLEMS

Although the field is rapidly moving towards automatic
image registration, algorithms and systems are most often
limited to a single application area such as stitching panora-
mas, super-resolution, high-dynamic-range (HDR) imaging,
focal stacking, multimodal imaging, etc. In most cases these
techniques will perform reasonably on a limited subset of
problems from other domains, however no single algorithm
exists that will accurately solve all types of registration
problems.

Examining the different applications that rely on image
registration from a data centric perspective provides insight
into the relative success of algorithms on particular types of
data. Each of our main categories: purely spatial variation,
significant variations in intensity, significant variations in
focus, variations in sensor type, and finally variations in
structure are examined below in detail.

A. Purely Spatial Variations

Image pairs that differ purely spatially are the most
common type of image registration problem. Applications
that require registration of images that vary spatially in-
clude panorama stitching, super resolution, and remote sens-
ing. Although area-based methods derivative of Lucas and
Kanade [10], [11] are capable of solving these types of
registration problems, feature based methods are the most
common technique applied and are generally considered
much more accurate unless the image pairs contain little
high-frequency information from which to find and match
features. Feature based methods work by matching features
detected in each image and finding a transform which max-
imizes the number of features which correctly correspond
once the images are aligned. Methods vary in their selection
of interest points from which features are calculated, in
their feature descriptors, in their method of matching, and
finally in the method and error function used to solve for
the aligning transform.



The choice of feature descriptor used for image regis-
tration is a subject of debate within the community. The
descriptors must be distinctive and at the same time robust
to changes in viewing conditions as well as to errors of
the detector. The comparison of different feature descriptors
has been recently made by Mikolajczyk and Schmid [12].
In their survey they compare shape context [13], steerable
filters [14], PCA-SIFT [15], differential invariants [16],
spin images [17], SIFT [18], complex filters [19], moment
invariants [20], and cross-correlation for different types of
interest regions, concluding that the ranking of the descrip-
tors is mostly independent of the interest region detector and
that the SIFT-based descriptors perform best.

Once features have been detected they must be matched
across images. Approximate nearest neighbor matching us-
ing k-d trees is the dominant method of matching and
is widely used by a number of researchers [21]. Exact
nearest neighbor approaches are computationally intractable
for large numbers of features and dimensions, and provide
a limited advantage over approximate methods [22].

Images are aligned by solving the overconstrained system
created by the feature pairs. Random Sample and Consensus
(RANSAC) is commonly used [21] because of its robustness
and efficiency, however other solvers such as nonlinear least
squares fitting have also been applied with success. Yang et
al. propose using an Iterative Closest Point Dual Bootstrap
method [23] which was reported to perform favorably to
RANSAC for difficult image pairs.

B. Intensity Variations

Image pairs that contain significant intensity variations
include those used for high dynamic range (HDR) imag-
ing, pairs with varying illumination, and even panorama
sequences taken in direct sunlight.

Feature based methods listed in Section III-A work for
small variations in intensity, particularly if their feature
descriptors are gradient based. However for image pairs with
significant intensity variation, the interest regions of feature
based methods do not occur in the same location. Sand and
Teller [24] attempt to handle intensity varying pairs by only
selecting features from parts of the image that can be more
easily matched while avoiding parts that are difficult. Their
technique was designed for matching two video sequences,
achieving good results with the limited spatial variation
that entails, however it was not tested on still photographs.
More recently Tomaszewska and Mantiuk [25] presented
a similar idea, reporting a high quality alignment such that
the ”photographs were aligned with sufficient accuracy so
that there are no visible artifacts in the final HDR image”
by using only features that occur across all images in the
set.

Schechner and Nayer [26] presented an alignment method
based on pyramids of maximum likelihood as a part of
their approach to generalize panorama images to incorporate

HDR. Kang et al. [27] also described a technique for
creating high dynamic range video from a sequence of
alternating variable intensity exposures. Their sophisticated
HDR stitching process uses local alignment and motion
estimation to compensate for camera movement and object
motion within the scene, a technique tailored to their input
data.

Finally, Ward [28], [29] introduced a method specifically
designed to align images with significant variations in inten-
sity. The technique thresholds image pairs into pyramidal
bitmaps. Bitmaps are analyzed and aligned for translation
errors using shift and difference operations over each image.
With this method 3 megapixal image sets are aligned in
a fraction of a second. Their method deals solely with
translation errors, although they discuss the possibility of
rotation errors, suggesting that 10% of their data set failed
as a result.

C. Focus Variations

Focus variations can occur in image pairs deliberately as
is the case with focus stacking, or through motion blur due
to movement of the camera or objects in the scene as can
sometimes be the case in super resolution imaging. Here
again feature based methods surveyed in Section III-A have
utility to a point, however image pairs with no overlapping
regions of focus do not work; the same interest points are not
detected across images with different focal planes. Flusser,
Zitová and Suk attempt to overcome this by finding blur
invariant interest regions [30], [31]. Their evaluation of a
single 128x128 pixel image using control points makes it
difficult to provide significant conclusion about the quality
of registration this provides.

In focal stacking applications, classic intensity based area
methods are typically used to find the correct alignment.
These methods work by attempting minimizing the differ-
ence in actual pixel values between the two images, most
often through some form of gradient descent. Lucas and
Kanade [10], [11] based sum of square difference area
methods are reasonably successful assuming the spatial
overlap between images is significant. This is often the case
for focus stacking problems, particularly those composed
of microscope data where sensor movement is minimal
between images. Bradley et al. [32] make use of normalized
cross correlation in their virtual microscopy system requiring
an overlap of at least 45% between image pairs and ignoring
results that fall outside their expected solution area.

D. Sensor Variations

Image pairs taken using different sensors are commonly
referred to as multimodal image pairs. They are common to
both medical imaging and to remote sensing applications,
where proper alignment of two or more modalities provides
significant additional information. When sensors differ there
is no guarantee that intensities, gradients, or edges will be



similar, and both feature based and intensity based methods
fail to find alignments.

Sharma and Paval [33] propose to overcome this by
making the images as similar as possible, transforming
images into representations invariant to polarity reversals
before applying traditional area based techniques. Irani and
Anandan [34] similarly transform images into high-pass
energy images which are significantly less sensitive to sensor
variations. These methods have been further developed by
Liu et al. [35], [36] who use Gabor filtering as their local
frequency representation. More recently, Henn and Witsch
[37] define two nonlinear distance functions and minimize
these to find the optimal alignment.

In the field of medical imaging, maximization of mu-
tual information, developed simultaneousely by Viola and
Wells [38] and by Collignon et al. [39], is the most
common method used and was comprehensively surveyed
by Pluim, Maintz and Viergever [5]. Bardera, Feixas and
Boada proposed two new similarity measures based off of
Jensen’s difference applied to Rẽnyi and Tsallis-Havrda-
Charvãt entropies claiming that their proposed measures
are more robust than the normalized mutual information
for some modalities and a determined range of the en-
tropy parameter. Gan et al. [40] suggest using Kullback-
Leibler distance if a priori knowledge of the joint intensity
distribution is available. Makela et al. [41] provide an
overview of further methods focusing specifically on cardiac
images. While features based on mutual information are
being used in pattern recognition [42], [43] they have not
to our knowledge been used successfully for registration of
multimodal images.

Automatic registration of 3D shapes and volumetric slices
of sensor data are common within the medical imaging
community, however they fall outside the scope of this
survey.

E. Variations in Structure

Image pairs can vary significantly in the structure of the
scene they depict, either because objects within the scene
have moved, or more commonly in medical imaging because
objects have changed over time. Aligning these images in
spite of these changes often requires non-rigid transforms
that solve for the alignment of regions or at the extreme
of individual pixels. Methods discussed here can include
a variety of other variations, although sensor variations
are most common. This concept of multiple dimensions of
variation is discussed further in Section V.

Bookstein proposed one of the seminal concepts of non-
rigid models for image registration: using thin plate splines
to interpolate affine transforms [44]. Moshfeghi proposed an
alternative model based on elasticity [45]. Christensen et
al. introduce the idea of viscous fluid representations of de-
formable registration [46], while Bro-Nielson and Gramkow
[47] significantly accelerate this concept using a fast fluid

model. McInerney and Terzopoulos [48] provide a good
survey of early nonrigid techniques and their application
within the medical imaging community.

Rueckert et al. [49] present a nonrigid method that
uses a global affine transform, followed by a local B-spline
matching of normalized mutual information voxels, applying
their technique to the registration of breast MR images.
Rohde et al. [50] make several contributions to the field: use
of radially symmetric basis functions rather than B-splines
to model the deformation field; a metric to identify regions
that are poorly registered and over which the transformation
needs to be improved; partitioning of the global registration
problem into several smaller ones; and a new constraint
scheme that allows us to produce transformations that are
topologically correct. They compare the proposed approach
to more traditional ones listed above and show that their
new algorithm compares favorably to those in current use.
More recently D’Agostino et al. [51] propose modeling
the registration as a viscous fluid that deforms under the
influence of forces derived from the gradient of the mutual
information registration criterion, validating their method by
matching simulated T1-T1, T1-T2 and T1-PD images.

Crum, Hartkens and Hill present a more recent survey of
nonrigid image registration [52] providing a more in depth
analysis of this subject. The differentiation of which method
of deformation is most applicable to different modalities or
problems is a complex question and is ultimately beyond the
scope of this survey but as will be discussed in Section V
is an important step for the future of the field.

IV. EVALUATION OF REGISTRATION ACCURACY

Zitová and Flusser [7] identify three measures of regis-
tration accuracy in their survey: localization error, matching
error, and alignment error. Localization error represents
mistakes in the location of feature based methods’ interest
regions. Matching error is measured as the number of false
matches between features. Finally, alignment error measures
the difference between the proposed alignment and the
actual between-image geometric distortion. Localization and
matching error are specific to feature based methods and can
be measures of problems within the steps of those methods,
however alignment error is ultimately what researchers must
be concerned with when comparing across non-feature based
methods.

The unbiased evaluation of registration techniques is a
significant problem within the field. Techniques are most
often compared using researchers own image pairs, which
can vary significantly in resolution, quality, difficulty, and
number, making it extremely difficult to understand how
well their algorithms perform. Some researchers provide a
point of comparison by testing their images with several
other methods, however this selection of image pairs may
be unknowingly biased to work well with their methods.



Azzari et al. recently propose the use of a set of synthetic
data with a known ground truth which they have made
available online [9]. This is an important starting point,
however their image sets are low resolution (320x240),
limited to translation and rotation, and contain no variation
in intensity, focus, sensor, or structure. A much more robust
and high resolution set of images is necessary for the
evaluation of existing and new techniques, and would be
a critical contribution to the field of image registration.

The creation of such a test set would allow for a much
more detailed mapping of the image registration problem
space. By creating image pairs with both ground truth trans-
forms and known variations the performance of algorithms
in different parts of the problem space could be calculated
and the n-dimensional volume that each supports could be
calculated. This would allow developers with knowledge
about the forms of variation that their system encounters to
select the most appropriate algorithm(s), rather than relying
on rough conventions that exist within the field.

V. CONCLUSIONS AND FUTURE WORK

Image registration remains one of the most important
tasks in computer vision when combining information from
various sources. This paper gives an up-to-date survey of
image registration techniques, building from previous sur-
veys [8], [7], [5]. We have presented a mapping of the
image registration problem domain that focuses on the types
of variation that occur between images to be registered.
Conceptualizing these forms of variation as dimensions of
the image registration problem, we have an abstraction
which allows us to think of algorithms as volumes within
the n-dimensional problem space. Existing algorithms have
been introduced into this mapping according to the main
form of variation that they have been designed to support,
and instances where these algorithms support other forms
of variation have been outlined, providing an initial map-
ping of the space that is summarized below in Table I.
The reorganization of image registration into our variation-
centric taxonomy provides a basis for several opportunities
that advance the field of image registration:

First, using variations as a starting point it is possible to
create a language model with which to describe registration
problems. By describing problems in terms of the variations
that exist in their images instead of their algorithmic details
it would be possible to create a system that automatically
selects the most appropriate algorithm from those available.
Problem centric methodologies are preferential to purely
algorithmic descriptions in a number of ways. First, they
give those programmers who are not vision specialists access
to advanced image processing techniques without requir-
ing specific knowledge of the underlying algorithms that
implement them. Second, they allow improved algorithms
to seamlessly replace older implementations providing pro-
grammers using a problem centric software library with an

instantaneous upgrade path without reprogramming or inte-
grating a new implementation. Finally, if as often happens
the conditions around the problem change, the programmer
can automatically select a more appropriate algorithm simply
by changing their description. We liken this to the field of
computer graphics where a model describing the world is
provided by the programmer, and is interpreted using the
available resources into the scene.

This concept can be extended further into the fully auto-
matic classification of registration problems[53], [54]. Many
of the variations explored in this paper can be automatically
detected from the image pairs, allowing for an estimation of
where the pairs exist in problem space. This allows for the
selection of an algorithm appropriate to the given conditions
of the problem. Such an automated system would come close
to the ’ultimate registration method’ described by Zitová
and Flusser at the end of their survey; a system able to
recognize the type of task and to decide by itself about the
most appropriate solution.

In addition, most image registration methods are designed
to work along a single dimension, however the combination
of these is becoming more common, particularly in sensor
/ structure combinations for multimodal non-rigid medi-
cal imaging. Another notable multidimensional example is
Schechner and Nayer’s HDR panorama stitching method
[26]. The examination of other combinations of variation
such as focus and structure could prove interesting, although
many of these higher dimensional pairings are likely best
solved by examining the groups of images as a whole and
choosing which pairs to match, a topic not covered within
this survey.

Finally, a more detailed mapping is desirable, but as
mentioned in Section IV, in order to create such a mapping
a well thought out, significant, robust, high resolution set of
image pairs agreed upon by the community is necessary for
the evaluation of image registration algorithms.
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